Deep Reinforcement Learning for Green Security Games with Real-time Information

Yufei Wang¹, Ryan Shi², Lantao Yu³, Yi Wu⁴, Rohit Singh⁵, Lucas Joppa⁶, Fei Fang²

Peking University¹, Carnegie Mellon University² Stanford University³, University of California, Berkeley⁴ World Wide Fund for Nature⁵, Microsoft Research⁶

AAAI 19

Motivation

Green Security Challenges

Environmental Resources

Endangered Wildlife

Fisheries

122 rhinos in 2009

1215 rhinos in 2014

Green Security Games

- Green Security Games model the strategic interaction between law enforcement agencies (defenders) and their opponents (attackers). [Fang, Stone, and Tambe 2015; Fang et al. 2016; Xu et al. 2017]
- Design patrol routes with a limited number of patrol resources.

• However, previous work mainly focuses on computing patrol strategy offline.

4/25/2019

Motivation

The effect of Real-time Information

Our contribution

- We propose a game model GSG-I for green security games, that incorporates the vital real-time information.
- We design an efficient algorithm DeDOL that combines deep reinforcement learning and the classic Double Oracle framework in security games to solve zero-sum GSG-I.
- DeDOL is built upon the Policy Space Response Oracle framework, with two important domain-specific enhancements that improves the training efficiency.

Our proposed GSG-I Model

• GSG-I: Green Security Games with Real-Time Information

GSG-I Model

Approximating Best Response against a fixed opponent with DQN [Mnih et al. 2015]

DQN Strategy

Double Oracle & Policy Space Response Oracle

[McMahan, Gordon, and Blum 2003; Lanctot et al. 2017]

Initial heuristic strategy

Attacker: parameterized heuristic

• Moving Direction $\pi_a(a_t^a = k | s_t^a) = \frac{\exp(w_p \cdot \overline{P}_k) + w_i \cdot \overline{I}_k + w_o \cdot \overline{O}_k)}{\sum_z \exp(w_p \cdot \overline{P}_z + w_i \cdot I_z + w_o \cdot \overline{O}_z)}$

• Attacking Tool Placement

$$\eta_a(b_t^a = 1 | s_t^a) = \frac{\exp(P_{m,n}/\tau)}{\sum_i \sum_j \exp(P_{i,j}/\tau)}$$

Defender: random sweeping

DQN Experiments

DQN strategy performance

DQN Experiments

DQN strategy demo

DQN patroller against a heuristic poacher on 7x7 Gaussian grid.

DQN poacher against a random sweeping patroller on 7x7 random grid.

Local modes: restrict attacker's entry point

Global mode with 4 entry points

local mode with 1 top-left entry point

4/25/2019

The DeDOL algorithm workflow

Deep-Q Network based Double Oracle enhanced with Local modes

DeDOL

Experiments

DeDOL Performance

	Random	Vanilla	DeDOL	DeDOL	DeDOL	CED
	Sweeping	PSRO	Pure Global Mode	Local + Global Mode	Pure Local Mode	CFK
3×3 Random	-0.04	0.65 (16)	0.73 (16)	0.85 (10 + 2)	0.71 (20)	1.01 (3500)
3×3 Gaussian	-0.09	0.52 (16)	0.75 (16)	0.86 (10 + 2)	0.75(20)	1.05 (3500)
5×5 Random	-1.91	-8.98 (4)	-1.63 (4)	-0.42 (4 + 1)	-0.25 (5)	-
5×5 Gaussian	-1.16	-9.09 (4)	-0.43 (4)	0.60 (4 + 1)	-2.41 (5)	-
7×7 Random	-4.06	-10.65 (4)	-2.00 (4)	-0.54 (3 + 1)	-1.72(5)	-
7 imes 7 Gaussian	-4.25	-10.08 (4)	-4.15 (4)	-2.35 (3 + 1)	-2.62(5)	-

- Vanilla PSRO: no heuristic initial strategy, no local mode
- CFR: counter-factual regret minimization
- Metric: highest expected utility against a best-response poacher across all iterations
- **DeDOL with local mode** performs the best!

Summary

- We incorporates the real-time information in Green Security Games, and proposed a new game model.
- We design an efficient algorithm DeDOL to compute the optimal patrol strategy in GSG-I, which is built upon the Double Oracle / Policy Space Response Oracle framework with domain-specific enhancements.

Thank you!

Yufei Wang wang.yufei@pku.edu.cn Zheyuan Ryan Shi ryanshi@cmu.edu

Lantao Yu lantaoyu@hotmail.com

Yi Wu jxwuyi@gmail.com

Rohit Singh rsingh@wwfnet.org

Lucas Joppa lujoppa@microsoft.com Fei Fang feifang@cmu.edu

The Azure resources are provided by Microsoft for Research AI for Earth award program.