Deep Reinforcement Learning for Green
Security Games with Real-time Information

Yufei Wang?!, Ryan Shi?, Lantao Yu3, Yi Wu#,
Rohit Singh®, Lucas Joppa®, Fei Fang?

Peking University!, Carnegie Mellon University?
Stanford University3, University of California, Berkeley*
World Wide Fund for Nature®, Microsoft Research®

AAAI 19



Motivation

Green Security Challenges

Environmental Resources Endangered Wildlife Fisheries

122 rhinos in 2009 1215 rhinos in 2014
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Motivation

Green Security Games

* Green Security Games model the strategic interaction between law enforcement
agencies (defenders) and their opponents (attackers). [Fang, Stone, and Tambe
2015; Fang et al. 2016; Xu et al. 2017]

* Design patrol routes with a limited number of patrol resources.

* However, previous work mainly focuses on computing patrol strategy offline.
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Motivation

The effect of Real-time Information

Google earth
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Contribution

Qur contribution

* We propose a game model GSG-| for green security games, that
Incorporates the vital real-time information.

* We design an efficient algorithm DeDOL that combines deep
reinforcement learning and the classic Double Oracle framework
IN security games to solve zero-sum GSG-I.

* DeDOL is built upon the Policy Space Response Oracle framework,
with two important domain-specific enhancements that improves
the training efficiency.
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Our proposed GSG-1 Model GSG-I Mode

* GSG-I: Green Security Games with Real-Time Information
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Approximating Best Response against a PQN Strategy

fixed opponent with DON

[Mnih et al. 2015]
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DO & PSRO
Double Oracle & Policy Space Response Oracle

[McMahan, Gordon, and Blum 2003; Lanctot et al. 2017]
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Enhancement on PSRO

Initial heuristic strategy

Attacker: parameterized heuristic Defender: random sweeping
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Defender's Expected Utility

DON strategy performance
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Defender's Utility

DON Experiments

vanilla double DQN, Random
—— enhanced DQN, Random
---- vanilla double DQN, Gaussian
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DON Experiments

DON strategy demo
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Enhancement on PSRO

Local modes: restrict attacker's entry point
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DeDOL

The DeDOL algorithm workflow

* Deep-Q Network based Double Oracle enhanced with Local modes
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DeDOL Performance

Experiments

Random Vanilla DeDOL DeDOL DeDOL CER
Sweeping PSRO Pure Global Mode | Local + Global Mode | Pure Local Mode
3 x 3 Random -0.04 0.65(16) 0.73 (16) 0.85(10+ 2) 0.71 (20) 1.01 (3500)
3 = 3 Gaussian -0.09 0.52(16) 0.75 (16) 0.86 (10 + 2) 0.75(20) 1.05 (3500)
5 » 5 Random -1.91 -8.98 (4) -1.63 (4) 042(4+1) -0.25 (5) -
2 % 5 Gausslan -1.16 -9.09 (4) -0.43 (4) 0.60 (4 + 1) -2.41 (5)
7 » 7 Random -4.06 -10.65 (4) -2.00 (4) 0.54(3+1) -1.72(5)
7 = T Gaussian -4.25 -10.08 (4) -4.15(4) 2353+ 1) -2.62(5)
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Vanilla PSRO: no heuristic Initial strategy, no local mode
CFR: counter-factual regret minimization

Metric: highest expected utility against a best-response poacher

across all iterations
DeDOL with local mode performs the best!
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Motivation

summary

* We Incorporates the real-time information in Green Security
Games, and proposed a new game model.

* We design an efficient algorithm DeDOL to compute the optimal
patrol strategy in GSG-1, which is built upon the Double Oracle /
Policy Space Response Oracle framework with domain-specific
enhancements.
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